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Multi-Parameter Lamb Wave Tomography
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This work shows that it is possible to obtain information about more than one parameter
from acoustic field information. A variety of ultrasonic Lamb wave modes were utilized to
reconstruct thickness and density of an isotropic plate. An image reconstruction of one parame-
ter (thickness of a plate) was carried out for four cases, i.e., the lowest symmetrical and
antisymmetrical modes, and the fastest symmetrical and antisymmetrical Lamb waves among
multiple modes. For two parameter reconstructions (thickness and density), the image process-
ing was performed using the lowest symmetrical and antisymmetrical modes simultaneously. In
this work, a modified version of algebraic reconstruction technique (ART), which is a form of
finite-series expansion method, was employed to reconstruct the ultrasonically computed tomo-

graphic images. Results from several sample geometries are presented.
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1. Introduction

In nondestructive evaluation (NDE), ultra-
sound has been widely used to detect flaws in a
specimen or to measure material properties. Bulk
waves known as longitudinal and shear waves, as
well as guided waves (e.g. Rayleigh and Lamb
waves) are commonly used in nondestructive
testing. In recent years, ultrasonic tomography
has been spotlighted as one of the most promising
new techniques in NDE (Eberhard, 1982).

Computerized tomography (CT) is a nondes-
tructive technique which reconstructs the interior
image of structures from externally accessible
measurements. Though tomography is principally
applied in the medical area with X-rays, it can be
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used for other types of penetrating radiation and
can be used to enhance the imaging capability of
other nondestructive testing methods. Specially,
the ultrasonic tomographic imaging technique
can play an important role in ultrasonic testing to
detect flaws and to measure material properties.
In this study, we illustrate the use of this
approach in the reconstruction of the thickness
variation and density distribution of a plate using
ultrasonic computerized tomography.

The use of ultrasonic testing to measure thick-
ness of a material from accessible side of a struc-
ture is not new. The existing method of pulse-
echo C-scan images can show a two-dimensional
display, but each measurement shows only the
state of a corresponding single testing point. Here,
we utilize Lamb waves in conjunction with tomo-
graphy technique to get the distribution of both
thickness and density in a plate. A modified
version of the algebraic reconstruction algorithm,
which is a kind of finite-series expansion method,
is used for Lamb wave tomography.

In conventional reconstruction algorithms,
only a single parameter such as velocity, density,
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or amplitude was considered for reconstruction.
In many cases, however, it is not enough to get a
complete understanding of the material. We com-
monly need multiple parameters to obtain the fuil
information for a material. For example, two
material constant parameters, 1 and y, are needed
for complete characterization, even for the analy-
sis of an isotropic material. Therefore, a modified
multi-parameter reconstruction technique is
applied for the complete analysis of the thickness
variation and density distribution of a plate.
Kline et al.(1994) demonstrated how the ability
to propagate several distinct acoustic wave modes
could be exploited tomographically for the recon-
struction of the spatial behavior of more than one
mechanical property. One practical material char-
acterization problem that has attracted a great
deal of interest is the residual stress distribution
in a solid media. Choi et al.(1997) have em-
ployed multi-parameter acoustic tomography to
analyze the residual stress. The study has consid-
ered the anisotropy introduced by the presence of
residual stress.

Since Rayleigh (1887) first proposed the surface
waves which propagate along the free surface of
an infinite half-space and Lamb(1917) showed
the wave propagation in a plate which has two
boundary surfaces, ultrasonic Rayleigh and Lamb
waves have been widely used in nondestructive
evaluation. However, tomography using these
ultrasonic waves is not widely utilized in NDE.
Rose et al.(1988) discussed the technique for
mapping out interfacial weakness in an adhesive
bond structure using plate leaky wave amplitude.
Lamb waves along the ray paths were used
without the tomographic technique in their work.
Jansen et al.(1991a, 1991b, 1992) described the
use of tomographic reconstruction techniques to
image defects in surfaces using Rayleigh waves
and in thin sheets using Lamb waves through the
immersion technique. Hutchins et al.(1993) per-
formed ultrasonic Lamb wave experiments in thin
aluminum sheets using a pulsed laser source and
an electromagnetic acoustic transducer (EMAT)
detector. In their work, a form of transform
method was used, based on a filtered back-~projec-
tion algorithm for image processing. Jansen et al.

(1994) imaged the damaged region in two poly-
mer composite plate samples using a Lamb wave
immersion tomography technique. Nagata et al.
(1995) explored a computed tomographic imag-
ing system using laser generation and a dual-
probe fiber-optic interferometer detection of
Lamb waves. The attenuation of the Lamb waves
was measured and used for tomographic recon-
struction of the defects in thin aluminum plates.
Here, diffraction effects were neglected as straight
ray propagation was assumed.

2. Theory

Lamb waves, named after the scientist who first
described them in 1917, propagate in a plate with
the two boundary surfaces(Lamb, 1917). Here,
we constder P and SV waves in a plate where
displacements occur both in the direction of wave
propagation and perpendicularly to the plane of
the plate. A plane harmonic Lamb wave in a plate
of thickness 2) propagates in the positive
x-direction as shown in Fig. 1. Then, we obtain
the Rayleigh-Lamb frequency equations for sym-

metrical and antisymmetrical waves(Kolsky,
1963, Graff, 1991).

tansb [ 4gsk® ]*1_

tangb (BE—s%)* =0 M

where, + 1 for symmetrical
~—1 for antisymmetrical
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k . wave number

c. - longitudinal wave velocity
¢s . transverse wave velocity

According to the range of the Lamb wave
velocity ¢, the frequency Eq.(1) is altered in the
following dimensionless forms.

2b yL_» x

Fig. 1 Coordinate system for a plate
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The total number of symmetrical modes N; that
are possible in a plate of given thickness 25 at the
frequency @ is equal to
Ne=1+[2L]+[ 2241 ] (5)
S

and the total number of antisymmetrical modes,
N, is given as

o=+ 3]+ [+ ©

The brackets in this case indicate the nearest
integer part of the number that they enclose. A;
and As stand for longitudinal and transverse
wavelengths respectively (Viktorov, 1967).

In all of its many forms, tomographic imaging
is based on the concept that for radiation
propagated through a material, whether electro-
magnetic or acoustic, the quantities that one can
measure experimentally will be line integrals
along the path of travel. Generally, we seek to
characterize the local nonuniformities in material
properties on the basis of measurements of transit
time or attenuation. Given the frequency, the

+1

=0 (4)

Lamb wave velocity depends on the thickness of
a plate, as shown in Eq. (1). In this research, the
thickness and density in the Lamb wave mode
will be used as the main parameters for the tomo-
graphic imaging. Other parametric choices are
possible.

Before we develop the ART algorithm, a func-
tion of n by n variables is defined as

f(Xg) =f(Xu,xlz,xls,Xm'”,x,m) i,j=l,2,3,"', n (7)

Similarly, we also have

f(xu'yv) =f(x119x12’x13""anmthyIZvyla,"'vy;m) (8)

The notations of Egs. (7) and (8) will be used
for convenience here.

In general, parameter X is reconstructed for the
image. To reconstruct the tomogaphic images, one
begins with a set of initial guesses ( X, X, X2,
X, X% and adjusts these guesses to bring
the calculated time delay in line with the mea-
sured results. As for conventional ART, one
measurement is considered each time. Here, how-
ever, the relationship between the time delay and
X is relatively complicated and does not have a
simple form. Therefore, an estimated time delay
for the k* iteration is formally written based on
the current image profile as

TW=F(X$) ©)

Then, the current values are updated by adding
the modification factors so that the estimated time
delay matches the measured time delay. The
modification factors are given by

AXg;)___,ha_aF(g no summation on ,; (10)
L5

where A; is given by the relation

AT™
dF oF
XP XD
Derivations of the modification factors are

similar to the processing of two parameters shown
later. The partial derivative terms in Egs. (10)
and (11) can be numerically evaluated. In the
current study of the Lamb wave tomography,
after directly differentiating the time delay with
respect to the parameter X, i.e., thickness, they
are approximated by the numerical method.

A= summation on z,j (1Y
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Therefore, a typical iteration step for the recon-
struction algorithm is given by

X=X+ AX¥® no summation on 7, j

(12)

For some materials, it is not sufficient to get the
full information just by using one-parameter
tomographic imaging. In the Lamb wave tomo-
graphy, the thickness and density of a plate are
considered as the reconstruction parameters.

Commonly, we represent the time delays for the
lowest symmetrical and antisymmetrical modes in
the Lamb waves, as functions of two parameters,
Xy and ¥y Therefore, at each step, we can
estimate the time delays for the two modes of
waves based on the current values of two parame-
ter profiles (in this study, thickness and density).

TP=F(X$,YE) (13)
TP=F(X®, Y (14)

To match the estimated time delays to the
measured time delays, we must add the correction
factors to the current values

T=F(X$+AXY, YE+AYY)  (15)
Ti=F(XP+AXE, YH+AYE)  (16)

Since the modifications of the images at each
step are considered to be small, the above two
equations may be linearized using Taylor’s series
with the nonlinear terms neglected as follows

T=Fu(X$.Y®) +-2hsax @+ 2L vy
an
To=Fu X9, V) +-2Ea X +-2Ena v
(18)

where 7, and T are the measured time delays.
Using Egs. (13) and (14), we have from Egs.
(17) and (18)

oF, aF,

WAXS’)‘FWAY&?):ATSM (19
PBAX P+ AYP=ATY  (20)

where the index summation convention on i, j
has been used, and
ATE=T,—T¥ 20
ATE=T;—T¥ (22)

For any given acoustic ray and an # by #
square array, only Eqgs. (19) and (20) are avail-
able for 2#% unknowns. It is impossible to solve
these equations. This is the same problem that
occurs in single parameter reconstruction where a
minimum correction criterion is employed to
overcome this hurdle and obtain a unique solu-
tion. Here we adopt a similar approach. Due to
the possibility of different dimensions of the
variables, a nondimensional form is desirable. We
chose to seek a solution which minimizes the
measure of the correction given by

o= AXE,‘;’_?XS#" + A Yﬁ-‘}’% y® 23)
subject to the constraint that the predicted transit
times match the measured transit times (Kline et
al., 1994, Choi, 1997). Here X and ¥V are the
average of images over the entire pixels for the
two reconstruction parameters. The average val-
ues are used for the nondimensionalization
because the two parameters generally have differ-
ent dimensions.

From Egs. (19) and (20), the constraint equa-
tions for the minimum solution problems are

a%‘)AX o a%nﬁ YP-ATW=0 (24
a‘;f,‘zi,axgv+ aaxﬁi)AY%"—AT‘:’:O - (@23)

Then, following the standard Lagrangian mul-
tiplier procedure we form the following new func-
tion which must be minimized :

_[AXPAXY | AYPAYD
H=(AXEEXE )

X Y
+a(-ZEoaxp+Liavp-ary)
+aaxp+Leayp-aTe) 26

Differentiating Eq. (26) with respect to A X,
AY¥, A and A, to minimize Ff, we have 24242
linear equations with 2%%+2 unknowns.

9H
AXT @7)
oH
AT (28)
oH _
o @
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oH
=0
0Az
This yields a solution for the modification
factors given by

(30)

l & oF, Fs
AXP = “‘7X2</11‘5)F}T+/123%{%—,!;>

no summation on z, j (31)

YZ(/zl aYF(;, +a2le aﬁi,)

no summation on 7, ; (32)

AYE=—

where A; and 4, are determined by the following
equations
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Note that the repeated indices summation con-
vention has been applied to ; and ;.

Therefore, the parameter values for (£+1)*
iteration can be expressed as

Xh=x¥4+AX® nosummation on f, j (35)
and
Yg;u-l): Y‘J’-i—A Y(J;c)

This process is repeated for each ray until
convergence is achieved.

no summation on , j (36)

3. Results and Discussion

The purpose of nondestructive testing is to
measure the dimensions of a material or to inves-
tigate the characteristics of the material without
damaging or destroying it. In this research, the
thickness and density reconstruction of an
isotropic plate by the Lamb wave mode was
analyzed using the tomographic technique. The
transit times were given by the following summa-
tion

TT.=ZDom, (37)

Table 1 The properties of aluminum
Lamé’s Constants(xE10 Pa)

A “
5.6 2.6

where T'T: : transit time for ;* ray
Dy : distance transversed by ;* ray in j* cell

m; : slowness for the ;% cell
(function of reconstruction variables)

The sample was assumed to be aluminum.
Table 1 shows the properties of aluminum.

First, we discuss Lamb wave tomography to
measure the thickness of a plate. From the one-
parameter ART explained in the previous section,
an image reconstruction of the synthetic thickness
distribution of a plate was obtained for four cases,
i.e., the lowest symmetrical and antisymmetrical
modes, and the symmetrical and antisymmetrical
Lamb wave modes.

Even when Lamb waves propagate in an
isotropic plate, analysis is complicated with
respect to bulk wave propagation because multi-
ple modes can occur and are usually dispersive.
Unlike the bulk waves for which one typically has
access to multiple specimen faces, for plate waves
the sources and the receivers are both put on the
same surface to create the Lamb waves. Here, it
was assumed that the Lamb wave velocity can be
directly measured in any given direction. A 20x
20 pixel reconstruction domain was used for the
images of the thickness distribution.

For a given frequency, the number of Lamb
waves is finite, depending on the thickness of the
plate. Only the lowest Lamb wave modes (sym-
metrical and antisymmetrical) can be produced
for the thin plate. For the lowest symmetrical and
antisymmetrical wave tomography, the samples
were divided into five horizontal strips having
different thicknesses. Thicknesses of 1.8 cm and 1.
5 cm were used alternately in the symmetrical case
and 1.4 cm and 1.2 cm in the antisymmetrical
case. The geometry is shown in Fig. 2. As an
arbitrary initial guess, we assumed that the sam-
ple rative reconstruction algorithm, choosing
either a convergence criterion or the maximum
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« Symmetry

Region A : thickness=1.8cm
Region B : thickness=1.5cm

« Antisymmetry
Region A : thickness=1.4cm
Region B : thickness=1.2 cm

Fig. 2 Geometry for lowest wave tomography

(wo)sseuxoyy

ricknessicm)

Fig. 3 Thickness tomogram (lowest symmetri-
cal wave)

Yricknessicm)
(wo)sseuyony

Fig. 4 Thickness tomogram (lowest antisym-
metrical wave)

preset number of iterations was required to stop
the iteration process. The latter was adopted here

0.00
0.004
—%— symmetry
5 0.003! —a&— anti-symmetry
® 0.002-
4
0.001f-
0

t 2 3 4 5 6 7 8 9 10
iteration number

Fig. 5 Convergence behavior (lowest wave mode)

y
T—»" B

Fig. 6 Geometry for Lamb wave tomography

as most cases showed good reconstructed images
after the [0% iteration. Representative results
from samples for the lowest symmetrical and
antisymmetrical modes are presented in Figs. 3
and 4. The plots consist of a three dimensional
representation of the thickness distribution within
the sample, with the z-axis representing the
computed thickness for each x, y pair (pixel) in
the plane of interest. At the 10% iteration, the
reconstruction images are similar to the original
sample thickness distributions.

The convergence behaviors are shown in Fig. 5.
To illustrate the degree of convergence in Fig. 5,
for the k** iteration, we have

VR =3 (p¥ — pik-1)2

T

(38)

where 5% is the thickness in pixel 7.

The lowest wave mode is the particular case of
a Lamb wave. Hence, the Lamb wave mode is
considered as the general case for thickness image
processing. We assumed that the fastest wave
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Fig. 7 Thickness tomogram (symmetrical Lamb
' wave)
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Fig. 8 Thickness tomogram(antisymmetrical

Lamb wave)
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Fig. 9 Convergence behavior (Lamb wave)

among the muitiple modes can be measured
directly for the given frequency. The reference
samples are presented in Fig. 6. The outside part
of the sample is thicker than the inside square in
both symmetrical and antisymmetrical samples.
Figures 7 and 8 show the thickness distribution
images for the symmetrical and antisymmetrical
Lamb wave cases, respectively, at the 10 itera-
tion. From the reconstructed images, it can be
seen that the overall agreement is very good. The
convergence behavior is illustrated in Fig. 9.

So far, only one parameter (thickness) has
been considered. The next step was to expand the

A
B
C
D
Y
L.
Region  Thickness(cm) Density(g/cm’®)
A 14 2.7
B 12 2.7
c 14 2.7
D 12 2.6
E 14 2.6
Fig. 10 Geometry for two-parameter Lamb wave
tomography

Wicknessicm)

(wa)sssusiony

Fig. 11 Two-parameter Lamb wave tomogram
(thickness)

Fig. 12 Two-parameter Lamb wave tomogram
(density)

one-parameter Lamb wave tomography to two
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Fig. 13 Two-parameter Lamb wave tomogram in
20 iteration (thickness)

Fig. 14 Two-parameter Lamb wave tomogram in
20t iteration (density)

parameters (thickness and density) to obtain a
more comprehensive information about the plate
since the Lamb wave equation can be expressed as
a function of thickness and density. All assump-
tions were the same as in the previous one-param-
eter case except that the image processing was
performed using the lowest symmetrical and
antisymmetrical modes simultaneously. The
geometry is illustrated in Fig. 10. Figures. 11 and
12 show the tomographic images for the thickness
and the density of the plate at the 10 iteration
step. As shown in Figs. 13 and 14, as the iteration
number increases, the images approach the origi-
nal geometry. However, after the 10% iteration,
the quality of the images is enhanced only mar-
ginally. Figures 15 and 16 present the conver-
gence behaviors for the two parameter reconstruc-
tions. Even though the change in reference value
is relatively small, it may rapidly converge in 10
iterations with the perfect data acquisition.
Lastly, for the sensitivity analysis, we inves-
tigated the effect of synthetic errors on the recon-
struction. Potential errors in the measurements
may have serious effects on the image processing

Jae-Seung Choi and Ronald A. Kline

1 2 3 4 5 6 7 8 9 10
iteration number

Fig. 15 Convergence behavior (thickness)
6x10
§4X10
]
2x10
ox10 | | N N
1 2 3 4 5 6 7 8 9 10

iteration number
Fig. 16 Convergence behavior (density)

sought. To examine the reconstruction accuracy,
arbitrary potential errors in the measurements
were forced into the two parameter reconstruc-
tions. To do this, it was assumed that the mea-
sured values were distributed in a Gaussian fash-
ion about the actual values. Then, using a norm-
statistical routine, each measurement was pertur-
bed according to the normal distribution at a
given standard deviation level. The standard error
level in the experiment was considered as the
standard deviation of its normal distribution.
IMSL FORTRAN subroutine codes for statistical
analysis were used to generate random numbers
from a normal distribution. Under a 0.19; error
tolerance there was negligible influence on the
reconstructed images. Figures 17 and 18 show the
tomogram images at the 0.194 error level. The
images are relatively good.

4. Conclusions

Based on the results obtained in this research,
the following conclusions can be deduced.
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Fig. 17 Two-parameter Lamb wave tomogram at
0.19 error level (thickness)

Fig. 18 Two-parameter Lamb wave tomogram at
0.19 error level (density)

Ultrasonic waves were used to investigate the
thickness and density distributions of a plate in
target materials by computerized tomography
(CT). Lamb wave modes were utilized in the
thickness and density measurements.

To map out the thickness and density distribu-
tions, the modified algebraic reconstruction tech-
nique (ART) algorithm, a type of finite-series
expansion method, was introduced. For the one
parameter reconstruction (thickness), four cases
were investigated. For example, the lowest sym-
metrical and antisymmetrical Lamb wave modes
were applied to process the images of thin plates,
while for thick plates the fastest symmetrical and
antisymmetrical Lamb waves (highest mode)
were used. Then, using the lowest symmetrical
and antisymmetrical modes simultaneously, the
tomographic images for two parameters, the thick-
ness and density of a plate, were reconstructed.
Qualitatively and quantitatively, the reconstructed
values agreed with the original target values
approximately at 10* iteration step in both one-
and two-parameter cases.
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